
VISIT ANALOG.COM

Vol 54, No 4—December 2020

UART: A Hardware Communication
Protocol Understanding Universal
Asynchronous Receiver/Transmitter
Eric Peña , Senior Firmware Engineer
and Mary Grace Legaspi, Firmware Engineer

Abstract
UART, or universal asynchronous receiver-transmitter, is one of the most used
device-to-device communication protocols. This article shows how to use UART
as a hardware communication protocol by following the standard procedure.

When properly configured, UART can work with many different types of
serial protocols that involve transmitting and receiving serial data. In serial
communication, data is transferred bit by bit using a single line or wire.
In two-way communication, we use two wires for successful serial data
transfer. Depending on the application and system requirements, serial
communications needs less circuitry and wires, which reduces the cost
of implementation.

In this article, we will discuss the fundamental principles when using UART,
with a focus on packet transmission, standard frame protocol, and customized
frame protocols that are value added features for security compliance when
implemented, especially during code development. During product development,
this document also aims to share some basic steps when checking on a data
sheet for actual usage.

At the end of the article, the goal is for better understanding and compliance of
UART standards to maximize the capabilities and application, particularly when
developing new products.

“The single biggest problem in communication
is the illusion that it has taken place.”
—George Bernard Shaw
Communication protocol plays a big role in organizing communication between
devices. It is designed in different ways based on system requirements, and
these protocols have a specific rule agreed upon between devices to achieve
successful communication.

Embedded systems, microcontrollers, and computers mostly use UART as a
form of device-to-device hardware communication protocol. Among the avail-
able communication protocols, UART uses only two wires for its transmitting and
receiving ends.

Despite being a widely used method of hardware communication protocol, it is
not fully optimized all the time. Proper implementation of frame protocol is com-
monly disregarded when using the UART module inside the microcontroller.

By definition, UART is a hardware communication protocol that uses asynchro-
nous serial communication with configurable speed. Asynchronous means there
is no clock signal to synchronize the output bits from the transmitting device
going to the receiving end.

Interface

RX

UART1

TX

RX

TX

UART2

Figure 1. Two UARTs directly communicate with each other.

The two signals of each UART device are named:

 X Transmitter (Tx)

 X Receiver (Rx)

The main purpose of a transmitter and receiver line for each device is to trans-
mit and receive serial data intended for serial communication.

https://www.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://www.analog.com

2 UART: A HARDwARE COMMUNICATION PROTOCOL UNDERSTANDING UNIVERSAL ASyNCHRONOUS RECEIVER/TRANSMITTER

RX

UART1

TX

Data Bus
Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Data Bus
Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

RX

TX

UART2

Figure 2. UART with data bus.

The transmitting UART is connected to a controlling data bus that sends data in
a parallel form. From this, the data will now be transmitted on the transmission
line (wire) serially, bit by bit, to the receiving UART. This, in turn, will convert the
serial data into parallel for the receiving device.

The UART lines serve as the communication medium to transmit and receive one
data to another. Take note that a UART device has a transmit and receive pin
dedicated for either transmitting or receiving.

For UART and most serial communications, the baud rate needs to be set the
same on both the transmitting and receiving device. The baud rate is the rate at
which information is transferred to a communication channel. In the serial port
context, the set baud rate will serve as the maximum number of bits per second
to be transferred.

Table 1 summarizes what we must know about UART.

Table 1. UART Summary

Wires 2

Speed 9600, 19200, 38400, 57600, 115200, 230400,
460800, 921600, 1000000, 1500000

Methods of Transmission Asynchronous

Maximum Number of Masters 1

Maximum Number of Slaves 1

The UART interface does not use a clock signal to synchronize the transmitter and
receiver devices; it transmits data asynchronously. Instead of a clock signal, the
transmitter generates a bitstream based on its clock signal while the receiver
is using its internal clock signal to sample the incoming data. The point of syn-
chronization is managed by having the same baud rate on both devices. Failure
to do so may affect the timing of sending and receiving data that can cause
discrepancies during data handling. The allowable difference of baud rate is up
to 10% before the timing of bits gets too far off.

Data Transmission
In UART, the mode of transmission is in the form of a packet. The piece that
connects the transmitter and receiver includes the creation of serial packets
and controls those physical hardware lines. A packet consists of a start bit, data
frame, a parity bit, and stop bits.

Figure 3. UART packet.

Start Bit
The UART data transmission line is normally held at a high voltage level when it’s
not transmitting data. To start the transfer of data, the transmitting UART pulls
the transmission line from high to low for one (1) clock cycle. When the receiving
UART detects the high to low voltage transition, it begins reading the bits in the
data frame at the frequency of the baud rate.

Figure 4. Start bit.

Data Frame
The data frame contains the actual data being transferred. It can be five (5) bits
up to eight (8) bits long if a parity bit is used. If no parity bit is used, the data
frame can be nine (9) bits long. In most cases, the data is sent with the least
significant bit first.

Figure 5. Data frame.

Parity
Parity describes the evenness or oddness of a number. The parity bit is a way
for the receiving UART to tell if any data has changed during transmission. Bits
can be changed by electromagnetic radiation, mismatched baud rates, or long-
distance data transfers.

After the receiving UART reads the data frame, it counts the number of bits with
a value of 1 and checks if the total is an even or odd number. If the parity bit is
a 0 (even parity), the 1 or logic-high bit in the data frame should total to an even
number. If the parity bit is a 1 (odd parity), the 1 bit or logic highs in the data
frame should total to an odd number.

When the parity bit matches the data, the UART knows that the transmission was
free of errors. But if the parity bit is a 0, and the total is odd, or the parity bit is a
1, and the total is even, the UART knows that bits in the data frame have changed.

Figure 6. Parity bits.

Stop Bits
To signal the end of the data packet, the sending UART drives the data transmis-
sion line from a low voltage to a high voltage for one (1) to two (2) bit(s) duration.

Figure 7. Stop bits.

VISIT ANALOG.COM 3

Steps of UART Transmission
First: The transmitting UART receives data in parallel from the data bus.

Transmitting
UART

Data Bus

0

1

1

1

0

1

0

1

0

1

1

1

0

1

0

1

Figure 8. Data bus to the transmitting UART.

Second: The transmitting UART adds the start bit, parity bit, and the stop bit(s) to
the data frame.

0 1 1 1 0 1 0 1

+0
Start Bit

+0
Parity

+1
Stop Bit

Transmitting UART

Figure 9. UART data frame at the Tx side.

Third: The entire packet is sent serially starting from start bit to stop bit from
the transmitting UART to the receiving UART. The receiving UART samples the
data line at the preconfigured baud rate.

Transmitting
UART

TX

Receiving
UART

RX

1 1 1 1 1 1 0000 0

Figure 10. UART transmission.

Fourth: The receiving UART discards the start bit, parity bit, and stop bit from the
data frame.

0 1 1 1 0 1 0 1

–0
Start Bit

–0
Parity

–1
Stop Bit

Receiving UART

Data Frame

Figure 11. The UART data frame at the Rx side.

Fifth: The receiving UART converts the serial data back into parallel and trans-
fers it to the data bus on the receiving end.

Data Bus

0

1

1

1

0

1

0

1

Receiving
UART

0

1

1

1

0

1

0

1

Figure 12. Receiving UART to data bus.

Frame Protocol
One key feature that is available in UART yet not fully used is the implementation
of a frame protocol. The main use and importance of this is an added value for
security and protection on each device.

For instance, when two devices use the same UART frame protocol, there are
tendencies that, when connecting to the same UART without checking the
configuration, the device will be connected to different pins that may cause
malfunctions in the system.

On the other hand, implementing this ensures security because of the need to
parse the information received in alignment with the design frame protocol.
Each frame protocol is specifically designed to be unique and secure.

In designing a frame protocol, designers can set the desired headers and trail-
ers, including CRC, to different devices. In Figure 13, two (2) bytes are set as part
of the header.

https://www.analog.com

4 UART: A HARDwARE COMMUNICATION PROTOCOL UNDERSTANDING UNIVERSAL ASyNCHRONOUS RECEIVER/TRANSMITTER

Figure 13. Sample UART frame protocol.

Based on the sample, you can set a header, trailer, and CRC that are unique to
your device.

Header 1 (H1 is 0xAB) and Header 2 (H2 is 0xCD)
Header is the unique identifier that determines if you are communicating with
the correct device.

Command (CMD) Selection
Command will depend on the list of command designed to create the communi-
cation between two devices.

Data Length (DL) per Command
Data length will be based on the command chosen. You can maximize the length
of data depending on the command chosen, so it can vary based on the selec-
tion. In that case, the data length can be adjusted.

Data n (Varying Data)
Data is the payload to be transferred from devices.

Trailer 1 (T1 is 0xE1) and Trailer 2 (T2 is 0xE2)
Trailers are data that are added after the transmission is ended. Just like the
Header, they can be uniquely identified.

Cyclic Redundancy Checking (CRC Formula)
The cycling redundancy checking formula is an added error detecting mode to
detect accidental changes to raw data. The CRC value of the transmitting device
must always be equal to the CRC computations on the receiver’s end.

It is advisable to add security by implementing frame protocols for each UART
device. The frame protocol needs identical configurations on both the transmitting
and receiving devices.

UART Operations
When using any hardware communication protocol, it’s a prerequisite to check
the data sheet and hardware reference manual.

Here are the steps to follow:

First: Check the data sheet interface of the device.

Figure 14. Microcontroller data sheet.

Second: Under memory map, check the UART address.

Figure 15. Microcontroller memory map.

Third: Check the specific details for the UART PORT such as the operation mode,
data bits length, the parity bit, and stop bits.

Sample UART port details in data sheet:

UART Port

The sample MCUs provide a full-duplex UART port, which is fully compatible with
PC standard UARTs. The UART port provides a simplified UART interface to other
peripherals or hosts, supporting full-duplex, DMA, and asynchronous transfer of
serial data. The UART port includes support for five to eight data bits, and none,
even, or odd parity. A frame is terminated by one and a half or two stop bits.

Fourth: Check the UART operation details, including the baud rate computation.
Baud rate is configured using the following sample formula. This formula varies
depending on the microcontroller.

Sample details of UART operations:

 X 5 to 8 data bits
 X 1, 2, or 1 and ½ stop bits
 X None, or even or odd parity
 X Programmable oversample rate by 4, 8, 16, 32
 X Baud rate = PCLK/((M + N/2048) × 2OSR + 2 × DIV

where,
 OSR (oversample rate)
 UART_LCR2.OSR = 0 to 3
 DIV (baud rate divider)
 UART_DIV = 1 to 65535
 M (DIVM fractional baud rate M)
 UART_FBR.DIVM = 1 to 3
 N (DIVM fractional baud rate M)
 UART_FBR.DIVN = 0 to 2047

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2020 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

Fifth: For the baud rate, make sure to check what peripheral clock (PCLK) to use.
In this example, there is a 26 MHz PCLK and 16 MHz PCLK available. Notice that
OSR, DIV, DIVM, and DIVN varies per device.

Table 2. Baud Rate Example Based on 26 MHz PCLK

Baud Rate OSR DIV DIVM DIVN

9600 3 24 3 1078

115200 3 4 1 1563

Table 3. Baud Rate Example Based on 16 MHz PCLK

Baud Rate OSR DIV DIVM DIVN

9600 3 17 3 1078

115200 3 2 2 348

Sixth: Next part is to check the detailed registers for UART Configuration. Take a
look at the parameters in computing the baud rate such as UART_LCR2, UART_DIV,
and UART_FBR. Table 4 will lead to a specific register to cover.

Table 4. UART Register Descriptions

Name Description

UART_DIV Baud rate divider

UART_FIBR Fractional baud rate

UART_LCR2 Second line control

Seventh: Under each register, check the details and substitute the values to
compute for the baud rate, then start implementing the UART.

Why Is It Important?
Familiarity with the UART communication protocol is advantageous when developing
robust, quality-driven products. Knowing how to send data using only two wires,
as well as how to transport a whole pack of data or a payload, will help ensure
that data is transferred and received without error. Since UART is the most
commonly used hardware communication protocol, this knowledge can enable
design flexibility in future designs.

Use Cases
You can use UART for many applications, such as:

 X Debugging: Early detection of system bugs is important during development.
Adding UART can help in this scenario by capturing messages from the system.

 X Manufacturing function-level tracing: Logs are very important in manufactur-
ing. They determine functionalities by alerting operators to what is happening
on the manufacturing line.

 X Customer or client updates: Software updates are highly important. Having
complete, dynamic hardware with update-capable software is important to
having a complete system.

 X Testing/verification: Verifying products before they leave the manufacturing
process helps deliver the best quality products possible to customers.

References
“Basics of UART Communication.” Electronics Hub, July 2017.

Campbell, Scott. “Basics of UART Communication.” Circuit Basics.

Keim, Robert. “Back to Basics: The Universal Asynchronous Receiver/
Transmitter.” All About Circuits, December 2016.

“What Is UART Protocol? UART Communication Explained.” Arrow.

About the Author
Eric Peňa is a senior firmware engineer and part of the Design and Layout Team working with the Consumer Software Engineering
Group at Analog Devices. He joined ADI in Cavite, Philippines in April 2019. He graduated from Adamson University in Manila with a
bachelor’s degree in computer engineering. Eric previously worked at Technology Enabler Designer as a firmware engineer and also
as a systems engineer at Fujitsu Ten Solutions. He can be reached at eric.pena@analog.com.

About the Author
Mary Grace Legaspi is a firmware engineer and part of the Design and Layout Team working with the Consumer Software Engineering
Group at Analog Devices. She joined ADI in Cavite, Philippines in September 2018. She graduated from Tarlac State University
with a bachelor’s degree in electronics engineering. She is currently studying toward a Master of Management at the University
of the Philippines. She can be reached at mary.legaspi@analog.com.

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com
https://www.electronicshub.org/basics-uart-communication/
https://www.circuitbasics.com/basics-uart-communication/
https://www.allaboutcircuits.com/technical-articles/back-to-basics-the-universal-asynchronous-receiver-transmitter-uart/
https://www.allaboutcircuits.com/technical-articles/back-to-basics-the-universal-asynchronous-receiver-transmitter-uart/
https://www.arrow.com/en/research-and-events/articles/what-is-uart-protocol-uart-communication-explained
mailto:eric.pena%40analog.com?subject=
mailto:mary.legaspi%40analog.com?subject=

